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Abstract

We argue that superposition and the joint action style of specification are well suited for
the aspect-oriented formal specification of distributed systems. Superposition steps structure
a specification according to behavior instead of implementation level components. Super-
position also makes it possible to verify temporal safety properties and refine and compose
specifications in a way that preserves these properties.

1 Introduction

Much of the complexity of distributed systems stems from the interplay of different mechanisms for
atomicity, fault tolerance, etc. Because of performance considerations many distributed algorithms
contain optimizations to reduce the amount of data transferred. Unfortunately these optimizations
can make such algorithms hard to understand and verify. Ideally one should be able to specify the
mechanisms relatively independently, and to compose them to produce specifications of efficient
implementations.

Correctness of distributed systems if often expressed in terms of their temporal properties1.
A specification method for distributed systems should thus allow for convenient reasoning about
temporal properties, and help in modularizing both specification and verification in a way that
aligns with the temporal properties. We identify the following needs.

1. Distributed mechanisms require the cooperation of several objects, so a single syntactic unit
of modularity should be able to introduce data and operations into multiple implementation
level components.

2. It should be possible to specify independent aspects of collective behavior in parallel branches
of specification, and merge the branches to form a composed specification.

3. Because formal verification of temporal behavior is expensive, temporal properties should
be preserved both in refinement and composition.

4. For the same reason it is desirable to be able express and verify aspects in an abstract form
in order to reuse verification effort. It should thus be possible to design and verify aspects
of collective behavior independently of their deployment.

Needs 1–3 have been addressed in the long term research project DisCo [1] and the associated
specification language [6, 5]. The approach is based on stepwise refinement using superposition
and joint actions (abstractions of distributed cooperation). To address the last item in the wish
list, we have designed and implemented a formal specification language Ocsid, an experimental

1Temporal properties in the temporal logic sense, i.e. ordering of events. We do not consider real-time properties
here, even though they can also be specified using superposition (see e.g. [10]).
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specification list is
class node is

NEXT : ref node;
end;
action delete by toDelete, pred : node is
when pred.NEXT = ref(toDelete) do

pred.NEXT := toDelete.NEXT;
toDelete.NEXT := ref(toDelete);

end;
end;

Figure 1: A high level specification of deletion from a distributed list

variant of the DisCo language. The language allows us to specify and verify aspects of collective
distributed behavior and to compose aspects into specifications in such a way that the aspects
are woven together. The language has a formal semantics given in the typed higher order logic
of the PVS [11] theorem prover, which is allows for fully mechanized reasoning about Ocsid
specifications [9].

2 Joint Actions and Superposition

In the joint action [2, 3] style of specification, distributed systems are specified using atomic
guarded parallel assignments involving multiple objects. The formal basis is linear time temporal
logic, and behavior is specified in terms of state variables that reside in objects. The structure of
objects is dictated by classes.

A system described by a joint action specification starts in some initial state satisfying the
initial condition of the specification, and proceeds to execute enabled actions one at a time. If
more than one action is enabled (i.e. a combination of objects for which the guard evaluates to
true exists), one of the actions is nondeterministically selected.

Figure 1 shows an example of a joint action specification, a simplified version of an example
borrowed from [12]. It describes how objects of class node are arranged in a singly linked ring,
and how a node is deleted from the ring. Identifiers toDelete and pred in action delete are formal
roles in which objects may participate.

The initial configuration of the nodes would be specified by an initial condition which we omit
in the interest of brevity. In order to further reduce the number of irrelevant details, we only
consider deletion. Insertion of new nodes would be specified similarly.

Joint actions in a high level specification may imply synchronizations that are not directly
possible in an actual implementation, but are useful at the specification level to express distributed
cooperation. Stepwise refinement is used to introduce lower level mechanisms that implement the
synchronizations. For example, action delete in Figure 1 cannot be directly implemented in a
distributed system, because it needs to assign to the NEXT attribute of two objects. Our strategy
is to introduce new variables from which NEXT can be calculated, and consequently omit NEXT
and the synchronizations needed for accessing it from the implementation.

Superposition is a simple form of stepwise refinement, where the only transformation is to add
new structure to a specification. An Ocsid superposition step may introduce new state variables
into classes, strengthen the guards of actions, and introduce assignments to the newly introduced
state variables. Previously introduced variables cannot be assigned to, which preserves safety
properties2 by construction.

2Safety properties in the temporal logic sense: something bad never happens. This is in contrast to liveness
properties: something good eventually happens.
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In our example, we superimpose two implementation level mechanisms on the high level spec-
ification: an implementation of atomic assignment using a state machine and the exchange of
request and reply messages, and coordination implemented by the circulation of a token.

Figure 2 depicts a superposition step (a layer in DisCo parlance) that implements action delete
atomically. A layer consists of a requires part and a provides part. The requires part describes the
classes and actions that need to be present in a specification in order for the step to be applicable,
and the provides part describes the new structure to be added to the specification. New structure
is superimposed on classes and actions in extensions. The ellipsis “. . . ” in extensions denotes the
existing components of the base class or action.

Variables of enumeration types can be used for implementing hierarchical state similar to
Statecharts [4]. After declaring variable status to be of an enumeration type containing the values
valid and invalid, we can declare variable next to be accessible only when the value of status is
valid as follows:

status : (valid, invalid);
[status’valid].next : ref node;

The requires part describes a closed world, meaning that in a specification to which the step
is applied, delete must be the only action assigning to the state variable NEXT. The closed world
assumption along with the initial condition and extensions provided by the layer make it possible
to verify temporal properties of the resulting specification.

When verifying temporal properties for a layer we assume that actions in the base specification
imply the corresponding actions in the requires part of the layer. When the layer is superimposed
on a specification, it is sufficient to verify the action implications to establish that the invariants
proved for the layer hold in the result. This is similar to what Katz suggests in [7].

The invariants provided by layer messages l are:

∀n ∈ node : n.status = valid⇒ n.NEXT = n.[status′valid].next (1)

∀n ∈ node, r ∈ request :
r.existsAs = message ∧ r.[existsAs′message].from = ref(c)
⇒ n.NEXT = r.[existsAs′message].next

(2)

∀n ∈ node, r ∈ reply :
r.existsAs = message ∧ r.[existsAs′message].to = ref(c)
⇒ n.NEXT = r.[existsAs′message].next

(3)

Layer messages l is superimposed on specification list as

specification messages is superimpose(messages l, list);

The second parallel branch of specification describes how a token is used for coordinating
deletions. In the interest of brevity, we only outline the layer here. It requires class node and action
delete, and provides classes freeToken and reservedToken and actions reserveToken, passFreeToken
and passReservedToken.

Initially there is a single free token which is passed around with action passFreeToken. When
an object wants to initiate deletion, it waits for the free token. After acquiring the token, the
object consumes it and sends a reserved token in action reserveToken. The reserved token is then
passed around with action passReservedToken. Upon receiving a reserved token, an object may
execute delete, consume the reserved token and send a free token. The safety property provided
by the layer is that exactly one token exists at any time and that actions reserveToken and delete
alternate.

3 Composition

In our approach, classes and actions in a common ancestor specification provide the points where
separately specified aspects meet. If a class or an action has been extended in parallel refinements,
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layer messages l
requires

class node is NEXT : ref node; end;
action delete by toDelete, pred : node is
when true do

pred.NEXT := _; – – underscore denotes an arbitrary value
toDelete.NEXT := _;

end;
provides

new class request; new class reply;
class extension node is . . .

status : (valid, invalid); [status’valid].next : ref node;
end
class extension request is . . .

existsAs : (nothing, message);
[existsAs’message].from : ref node; [existsAs’message].next : ref node;

end
class extension reply is . . .

existsAs : (nothing, message);
[existsAs’message].to : ref node; [existsAs’message].next : ref node;

end
initially init is
∀ n : node; req : request; rep : reply ::

n.status = valid ∧ req.existsAs = nothing ∧ rep.existsAs = nothing;
new action requestDelete; new action completeDelete;
action extension requestDelete by . . . n : node; r : request is
when . . . n.status = valid ∧ r.existsAs = nothing do . . .

r.existsAs := message;
r.[existsAs’message].from := ref(n);
r.[existsAs’message].next := n.[status’valid].next;
n.status := invalid;

end;
action extension delete by . . . req : request; rep : reply is
when . . . pred.status = valid ∧ rep.existsAs = nothing
∧ req.existsAs = message ∧ req.[existsAs’message].from = ref(toDelete)

do
– – ‘pred.NEXT refers to the value assigned to pred.NEXT in the base specification
pred.[status’valid].next := ‘pred.NEXT;
req.existsAs := nothing;
rep.existsAs := message;
rep.[existsAs’message].to := ref(toDelete);
rep.[existsAs’message].next := ‘toDelete.NEXT;

end;
action extension completeDelete by . . . n : node; rep : reply is
when . . . rep.existsAs = message ∧ rep.[existsAs’message].to = ref(n) do

n.status := valid;
n.[status’valid].next := rep.[existsAs’message].next rep.existsAs := nothing;

end;
end;

Figure 2: Message exchange as an Ocsid layer
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its structure in a composition of the refinements reflects all the extensions. For a class this means
that in addition to the state variables in the common ancestor, it contains all the state variables
introduced in the refinements. For an action this means that in addition to the structure of
the common ancestor it contains all the new roles introduced in the refinements, the guard is a
conjunction of the common guard and the new conjuncts, and the body contains the common
assignments and the new assignments.

We also allow merging of independently introduced entities. In our example we want a single
message to play the role of a delete request and a reserved token. This is done by merging the
two classes and the actions that send the messages:

specification protocol is
compose messages, token;
class requestAndToken := deleteRequest, reservedToken;
action requestDeletePassToken := requestDelete, reserveToken;

end;

Merging classes deleteRequest and reservedToken into requestAndToken means that the three
names all denote the same class, we just happened to use different names for the class in the
branches. Merging actions is equivalent to executing the component actions simultaneously.

Compared to programming languages, the absence of control flow in joint action specifications
simplifies composition considerably. We only need to indicate to which action the new participants,
guard conjuncts and assignments are added. Their relative ordering does not matter.

In some ways our composition is similar to that of Tarr et al [13]. Composition of parallel
refinements can be seen as a restricted special case of composition of hyperslices. The reason
for the much more stringent restrictions on composition in our approach is the desire to preserve
temporal properties in composition, which we believe to be of crucial importance in the design of
correct distributed systems.

4 Abstract Aspects

While the superposition step in Figure 2 can be understood and verified independently, it is still
tightly coupled to the specification in Figure 1 because the names of entities in a layer and in a
specification need to match.

Verification of temporal properties is insensitive to the names of classes, state variables and
actions. For example, if we systematically replace NEXT with V in step messages l and in the
invariants, the modified invariants trivially hold for the modified superposition step.

This observation allows us to express aspects of collective behavior at a more abstract level.
For example, instead of of specifying how the specific action delete is implemented, we can design
and verify a superposition step that specifies how to implement an action A where two objects of
class C atomically modify their instance variables V of type T. This superposition step can then
be instantiated for any desired class, action and type. Verification of the abstract step can be
reused by establishing that the specification fulfills the assumptions of the superposition step [9].

5 Conclusions

As pointed out by Katz in [8], superposition steps can be used to structure specifications according
to features of behavior rather than implementation level components. We advocate the use of
superposition for aspect-oriented specification of distributed systems for the following reasons.
Superposition is a simple, well-understood mechanism with a sound formal basis. Combined with
the joint action style of specification it allows one to specify distributed behavior at a level of
abstraction where distributed cooperation is explicitly visible.

Temporal properties are an important correctness criteria in the specification of distributed
systems. Superposition steps allow one to express cooperation of objects in such a way that
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temporal properties can be verified independently. Verification and design effort is reused when a
verified superposition step is used in constructing a specification.

Joint actions make the cooperation in a distributed system explicit. The application level
semantics can be given at a high level of abstraction, and archived superposition steps can be used
for refining the specification into a form that can be implemented in a distributed fashion. Each
archived step encapsulates a particular temporal property, so the modularity of the specification
matches the modularity of desired properties.
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